6.2 Solving Polynomial Equations

- Group Review Activity -

<u>Directions</u>: In your groups of 3 – 4 people, go through this packet working on one round at a time. *Make sure everyone in your group understands the problems as you go!* Use academic vocabulary throughout the activity and take time to have collaborative discussions.

Round # 1:

- Regular Quadratics -

<u>Directions</u>: Solve for all zeros. *Use* factoring and/or quadratic formula.

1.)
$$x^2 + 7x = 30$$

$$2.) \quad 18x^2 + 12x = 0$$

3.)
$$4x^2 - 25 = 0$$

4.)
$$x^2 - 5 = -3x$$

Round # 2:

- Sum/Difference of Cubes -

<u>Directions</u>: Factor, then solve for all zeros.

1.)
$$x^4 - 125x = 0$$

2.)
$$27x^3 + 8 = 0$$

Round #3:

- "Quadratic-Like" Polynomials -

Directions: Solve for all zeros.

1.)
$$x^4 - 2x^2 = 63$$

2.)
$$5x^7 + 50x^5 + 80x^3 = 0$$

Round # 4:

- Synthetic Division -
- 1.) Divide using synthetic division:

$$(x^3 + 6x - 17) \div (x - 2)$$

2.) Is the given binomial a factor of the given polynomial? (Yes or No)

$$\frac{4x^4 - 22x^3 + 3x^2 + 38x - 6}{x - 5}$$

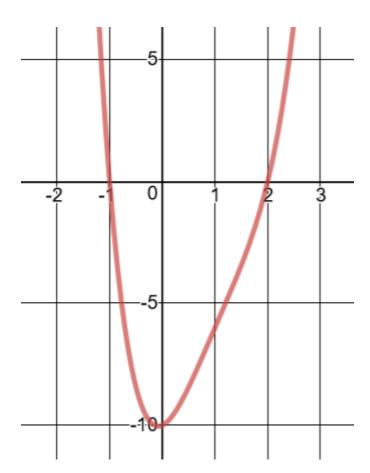
3.) Divide using the given factor, then fully factor the polynomial.

$$\frac{x^3-4x^2-11x+30}{x+3}$$

Round # 5:

- Writing Polynomial Equations -

<u>Directions</u>: Given the zeros, write a polynomial equation in standard form.

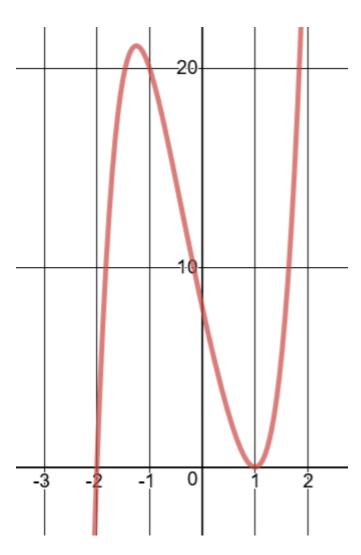

1.) 0 (mult. 2), 3 and
$$-\frac{1}{2}$$

2.)
$$3i \ and - \sqrt{5}$$

Round #6:

- Solve using Synthetic Division #1 -

<u>Directions</u>: Find all zeros, given this graph of the polynomial.



1.)
$$x^4 - 4x^3 + 6x^2 + x - 10 = 0$$

Round #7:

- Solve using Synthetic Division #2 -

<u>Directions</u>: Find all zeros, given this graph of the polynomial.

1.)
$$x^5 + x^3 + 2x^2 - 12x + 8 = 0$$

Challenge Problem! #1

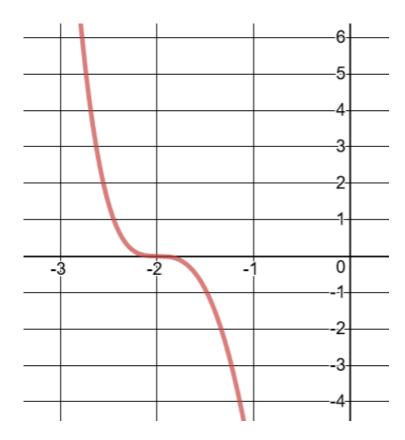
Directions: Factor, then find all zeros.

$$x^4 - 27x - 54 = -2x^3$$

Challenge Problem! #2

Directions: Factor, then find all zeros.

$$x^6 + 19x^3 - 216 = 0$$


Challenge Problem! #3

<u>Directions</u>: Given the zeros, write a polynomial equation in standard form.

$$(3-5i)$$
, $i\sqrt{2}$ and $-3i$

Challenge Problem! #4

<u>Directions</u>: Find all zeros, given this graph of the polynomial.

$$x^5 + 6x^4 + 17x^3 + 38x^2 + 60x + 40 = 0$$