Topic 1.1: Functions and Domain/Range - Day 2

Finding the Domain of a Function
The domain of a function f is the largest set of real numbers for which the value of $f(x)$ is a real number.

Lets consider

$$
f(x)=\frac{1}{x-3} .
$$

Day 2 --- HW Exercise Set 1.7
p.242: \#'s: 1-29 odds

We know that division by zero is undefined, thus the denominator " $x-3$ " cannot equal 0 . Thus x cannot equal exactly 3 . The domain consists of all real numbers other than 3 . We write the domain like so...

$$
D:(-\infty, 3) \cup(3, \infty)
$$

Now, lets consider

$$
g(x)=\sqrt{x-3}
$$

We know that only non-negative numbers have square roots that are real numbers, so, the expression under the square root sign, " $x-3$ ", must be non-negative. We can set the part under the square root sign greater than or equal to zero ($x-3 \geq 0$), and solve for x. We find that the domain is all real numbers greater than or equal to 3 . Write like so...

$$
\begin{aligned}
& x-3 \geq 0 \\
& x \geq 3
\end{aligned}
$$

Exp. Find the domain of each function.
a. $\quad h(x)=\frac{1}{x^{2}-8 x-20}$
b. $f(x)=x^{2}-7 x+13$

Factor.

no restrictions!
$x^{2}-8 x-20 \neq 0$

Sep 7-11:04 AM

Exp. Find the domain of each function.
c. $g(x)=\sqrt{3 x+12}$

$$
\begin{gathered}
3 x+12 \geq 0 \\
3 x \geq-12 \\
x \geq-4 \\
[-4, \infty)]
\end{gathered}
$$

d. $\quad j(x)=\frac{3}{\sqrt{x-5}}$

Solve.

$$
x-5>0
$$

$$
x>5
$$

