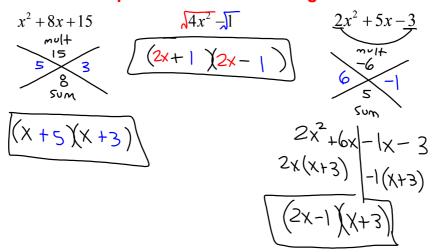
4.7 - Trigonometric Equations - Day 3

Trigonometric Equations Quadratic in Form


Some trigonometric equations are in the form of a quadratic equation $au^2 + bu + c = 0$, where u is a trigonometric function and $a \neq 0$. Here are two examples of trigonometric equations that are quadratic in form:

$$2\cos^2 x + \cos x - 1 = 0$$

$$2\sin^2 x - 3\sin x + 1 = 0.$$
The form of this equation is
$$2u^2 + u - 1 = 0 \text{ with } u = \cos x.$$
The form of this equation is
$$2u^2 - 3u + 1 = 0 \text{ with } u = \sin x.$$

To solve this kind of equation, try using factoring. If the trigonometric expression does not factor, use another method, such as the quadratic formula or the square root property.

Lets practice a little factoring first!

EXAMPLE 4 Solving a Trigonometric Equation Quadratic in Form

Solve the equation: $2\cos^2 x + \cos x - 1 = 0$, $0 \le x < 2\pi$.

$$(2\cos x - 1)(\cos x + 1) = 0$$

$$2\omega sx - 1 = 0$$
 $cox + 1 = 0$

$$2\cos x = 1$$
 $\cos x = -1$

$$\cos X = \frac{1}{2}$$

$$\chi = \frac{\pi}{3}, \frac{5\pi}{3}$$

$$X = I$$

Check Point 4 Solve the equation: $2\sin^2 x - 3\sin x + 1 = 0$, $0 \le x < 2\pi$.

$$(2 \sin x - 1) \sin x - 1) = 0$$

$$2\sin x - 1 = 0 \qquad \sin x - 1 = 0$$

$$2\sin x = 1$$
 $\sin x = 1$

$$Sin x = \frac{1}{2}$$

Unit circles:
$$X = \frac{\pi}{6}, \frac{5\pi}{6}$$

$$X = \frac{\pi}{2}$$

Check Point 5 Solve the equation: $4\cos^2 x - 3 = 0$, $0 \le x < 2\pi$.

$$465 \times -3 = 0$$

$$4\cos^2 x = 3$$

$$\sqrt{\cos^2 x} = \sqrt{\frac{3}{4}}$$

$$(oSX = \pm \sqrt{3})$$

$$X = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$