UNIT Review 4.3 – Graphing/Applying Sin and Cos Functions – PreCalc. --- Mr. Barsotti

1.) Graph one cycle of $y = \sin \theta$						2.) Graph one cycle of $y = \cos \theta$					
-1						1					
0	π	/2 1	т Зт	ī/2 2 [:]	π (0	π/2	π	Зт	τ/2	2π
1						1					

Find all the unknowns. Then set the x and y axis up for each graph and label accurately with simplified units. Then plot at least one **cycle** of the function. Write the x-axis labels below the coordinate grids and y-axis labels to the left.

Given a Graph, Write the Function:

Given these graphs, fill in all the blanks and then write the correct function, starting with "y =".

Word Problems:

Find all the unknowns. Then write a function that models each situation.

10.) A Ferris Wheel is 170 feet in diameter and is boarded from a platform that is 4 feet above the ground at the bottom of the Ferris Wheel. The ride completes 5 revolutions in 7 minutes. Write a function that models the height of the wheel in terms of the time in seconds .
Period = Sin or Cos ? (<i>circle one</i>)
A =, B =, K =, Function: h =

11.) The Proud Mary is a riverboat that has a 20 foot diameter paddlewheel behind it. As it turns at 15 revolutions per minute, the wheel goes 4 feet below the surface of the water. There is a marker on one of the paddles that helps track the movement of the wheel. When t = 0, the marker is at a level position close to the boat and as the wheel begins to turn, it rotates down toward the water. Write a function that models the height of the wheel in terms of the time in seconds .					
Period = Sin or Cos ? (<i>circle one</i>)	Level Position				
A =, B =, K =,					
Function:					
h =					

12.) Each day, the tide continuously goes in and out, raising and lowering a boat in the harbor. At low tide, the boat is only 4 feet above the ocean floor and, 6 hours later, at peak high tide, the boat is 30 feet above the ocean floor. Write a function that describes the boat's height above the ocean floor as it relates to time, given that at midnight is high tide .
Period = Sin or Cos ? (<i>circle one</i>) A =, B =, K =, Function: h =