\qquad Date: \qquad Per: \qquad

UNIT Review 4.3 - Graphing/Applying Sin and Cos Functions - PreCalc. --- Mr. Barsotti

Find all the unknowns. Then set the x and y axis up for each graph and label accurately with simplified units. Then plot at least one cycle of the function. Write the x-axis labels below the coordinate grids and y-axis labels to the left.

5.) $y=4 \cos \frac{4 \theta}{3}+2$

Amplitude = \qquad

Reflection? Yes / No (circle one)

Period $=$ \qquad

Midline: \qquad

6.) $y=-3 \sin 2\left(\theta+\frac{3 \pi}{8}\right)-2 \quad * * *$ PLOT GRAPH USING THE ENTIRE GRID!!! $* * *$
\qquad Reflection? Yes / No (circle one)
Period $=$ \qquad Midline: \qquad

Given a Graph, Write the Function:

Given these graphs, fill in all the blanks and then write the correct function, starting with " $y=$ " .

Amplitude $=$ \qquad Reflection? Yes / No (circle one)
b-value $=$ \qquad Midline: \qquad

Function: \qquad

Amplitude $=$ \qquad Reflection? Yes / No (circle one)
b-value $=$ \qquad Midline: \qquad

Function: \qquad
9.)

Amplitude = \qquad Reflection? Yes / No (circle one)
b-value $=$ \qquad Midline: \qquad

Function: \qquad

Word Problems:

Find all the unknowns. Then write a function that models each situation.
10.) A Ferris Wheel is 170 feet in diameter and is boarded from a platform that is 4 feet above the ground at the bottom of the Ferris Wheel. The ride completes 5 revolutions in 7 minutes. Write a function that models the height of the wheel in terms of the time in seconds.

Period $=$ \qquad Sin or Cos ? (circle one)
$A=$ \qquad ($B=$ \qquad , $K=$ \qquad Function: $\mathrm{h}=$ \qquad
11.) The Proud Mary is a riverboat that has a 20 foot diameter paddlewheel behind it. As it turns at 15 revolutions per minute, the wheel goes 4 feet below the surface of the water. There is a marker on one of the paddles that helps track the movement of the wheel. When $t=0$, the marker is at a level position close to the boat and as the wheel begins to turn, it rotates down toward the water. Write a function that models the height of the wheel in terms of the time in seconds.

Period $=$ \qquad Sin or Cos ? (circle one)
$A=$ \qquad , $B=$ \qquad , $\mathrm{K}=$ \qquad ,

Function:
$h=$ \qquad
12.) Each day, the tide continuously goes in and out, raising and lowering a boat in the harbor. At low tide, the boat is only 4 feet above the ocean floor and, 6 hours later, at peak high tide, the boat is 30 feet above the ocean floor. Write a function that describes the boat's height above the ocean floor as it relates to time, given that at midnight is high tide.

Period $=$ \qquad Sin or Cos ? (circle one)
\qquad ($\mathrm{B}=$ \qquad , K = \qquad Function: $\mathrm{h}=$ \qquad

